Final

Task Specific Plan
Building 22
Scoping Survey

Naval Air Station Joint Reserve Base
Willow Grove
Horsham, Pennsylvania

October 2014

Prepared for:
Department of the Navy
Base Realignment and Closure
Program Management Office East
Philadelphia, Pennsylvania

Prepared by:
Tetra Tech, Inc.
661 Anderson Drive, Suite 5
Pittsburgh, Pennsylvania

Prepared under:
Naval Facilities Engineering Command
Contract Number: N62470-08-D-1001
Task Order: WE42

Contract Number: N62470-08-D-1001
Task Order: WE42
FINAL
TASK SPECIFIC PLAN
BUILDING 22
SCOPING SURVEY

NAVAL AIR STATION JOINT RESERVE BASE WILLOW GROVE
HORSHAM, PENNSYLVANIA

October 2014
Contract Task Order WE42

Prepared for:
Department of the Navy
Base Realignment and Closure
Program Management Office East
Philadelphia, Pennsylvania

REVIEW AND APPROVAL

Lawson Bailey
Project Manager

Willington Lin
BRAC Environmental Coordinator
TABLE OF CONTENTS

REVIEW AND APPROVAL .. i

ACRONYMS AND ABBREVIATIONS .. iv

1.0 INTRODUCTION ... 1

1.1. SITE DESCRIPTION AND HISTORICAL SUMMARY .. 1

2.0 SURVEY DESCRIPTION... 1

2.1 SURVEY PREPARATION AND REMEDIATION ACTIVITIES.. 2

2.2 RELEASE CRITERIA .. 2

2.3 REFERENCE AREA ... 3

2.4 INVESTIGATION LEVELS .. 3

2.5 SURVEY UNITS AND CLASSIFICATION ... 3

2.6 ESTABLISHING THE NUMBER OF MEASUREMENTS ... 3

2.7 ALPHA AND BETA SCAN MEASUREMENTS .. 4

2.7.1 Alpha Scan Measurements ... 5

2.7.2 Beta Scan Measurements ... 7

2.8 ALPHA AND BETA STATIC MEASUREMENTS .. 8

2.8.1 Alpha Static Measurements .. 8

2.8.2 Beta Static Measurements ... 9

2.9 GAMMA WALKOVER SURVEYS .. 10

2.10 REMOVABLE CONTAMINATION SURVEYS ... 10

2.11 MEDIA SAMPLES ... 11

3.0 SITE RESTORATION .. 11

4.0 BUILDING 22 REPORT ... 11

5.0 QUALITY CONTROL .. 11

6.0 ENVIRONMENTAL PROTECTION ... 11

7.0 REFERENCES ... 12
ATTACHMENT

LIST OF FIGURES

FIGURE 1 BUILDING 22 SITE LOCATION ...14
FIGURE 2 BUILDING 22 CLASSIFICATION AND SURVEY UNITS15
FIGURE 3 BUILDING 22 SURVEY UNIT 1 ..16
FIGURE 4 BUILDING 22 SURVEY UNIT 2 ..17

LIST OF TABLES

TABLE 1 BUILDING 22 APPLICABLE STANDARD OPERATING PROCEDURES.....19
TABLE 2 BUILDING 22 PRIMARY RADIATION PROPERTIES AND RELEASE CRITERIA FOR RADIONUCLIDES OF CONCERN...20
TABLE 3 SUMMARY OF DATA QUALITY OBJECTIVES21
TABLE 4 DEFINABLE FEATURES OF WORK FOR RADIOLOGICAL SURVEYS22
ACRONYMS AND ABBREVIATIONS

\(\alpha \) \hspace{1em} \text{Alpha} \\
\(\beta \) \hspace{1em} \text{Beta} \\
\(\varepsilon_i \) \hspace{1em} \text{Instrument efficiency} \\
\(\varepsilon_s \) \hspace{1em} \text{Contaminated surface efficiency} \\
\(B \) \hspace{1em} \text{Background count rate} \\
\(b_i \) \hspace{1em} \text{Number of background counts in scan time interval} \\
\(d' \) \hspace{1em} \text{Index of sensitivity} \\
\(E \) \hspace{1em} \text{Detector efficiency} \\
\(G \) \hspace{1em} \text{Source activity} \\
\(i \) \hspace{1em} \text{Scan or observation interval} \\
\(\rho \) or \(P \) \hspace{1em} \text{Probability} \\
\(p \) \hspace{1em} \text{Surveyor efficiency factor} \\
\(R_B \) \hspace{1em} \text{Background count rate} \\
\(t \) \hspace{1em} \text{Time interval of detector over source} \\
\(T_B \) \hspace{1em} \text{Background counting time} \\
\(T_{S+B} \) \hspace{1em} \text{Sample counting time} \\
\(W_a \) \hspace{1em} \text{Area of the detector window} \\
\(Z_{1-\alpha} \) \hspace{1em} \text{Type I decision error level} \\
\(Z_{1-\beta} \) \hspace{1em} \text{Type II decision error level} \\

\(\text{cm} \) \hspace{1em} \text{Centimeter} \\
\(\text{cm}^2 \) \hspace{1em} \text{Square centimeter} \\
\(\text{cm/sec} \) \hspace{1em} \text{Centimeter per second} \\
\(\text{cpm} \) \hspace{1em} \text{Count per minute} \\

\(\text{dpm} \) \hspace{1em} \text{Disintegration per minute} \\
\(\text{DFW} \) \hspace{1em} \text{Definable features of work} \\

\(\text{ft}^2 \) \hspace{1em} \text{Square feet} \\
\(\text{HASP} \) \hspace{1em} \text{Health and Safety Plan} \\
\(\text{HRA} \) \hspace{1em} \text{Historical Radiological Assessment} \\

\(\text{inch/sec} \) \hspace{1em} \text{Inch per second} \\
\(\text{JRB} \) \hspace{1em} \text{Joint Reserve Base} \\
\(\text{LBGR} \) \hspace{1em} \text{Lower bound of the gray region} \\
\(\text{MARSSIM} \) \hspace{1em} \text{Multi-Agency Radiation Survey and Site Investigation Manual} \\
\(\text{MDC} \) \hspace{1em} \text{Minimum detectable concentration} \\

Final TSP \\
Building 22 \\
NAS JRB Willow Grove
<table>
<thead>
<tr>
<th>Acronym</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>MDCR</td>
<td>Minimum detectable count rate</td>
</tr>
<tr>
<td>min</td>
<td>Minute</td>
</tr>
<tr>
<td>N</td>
<td>Number of data points</td>
</tr>
<tr>
<td>NAS</td>
<td>Naval Air Station</td>
</tr>
<tr>
<td>NRC</td>
<td>Nuclear Regulatory Commission</td>
</tr>
<tr>
<td>PSPC</td>
<td>Position sensitive proportional counter</td>
</tr>
<tr>
<td>RASO</td>
<td>Radiological Affairs Support Office</td>
</tr>
<tr>
<td>Ra-226</td>
<td>Radium 226</td>
</tr>
<tr>
<td>ROC</td>
<td>Radionuclides of concern</td>
</tr>
<tr>
<td>SCM</td>
<td>Surface contamination monitor</td>
</tr>
<tr>
<td>sec</td>
<td>Second</td>
</tr>
<tr>
<td>SIMS</td>
<td>Survey Information Management System</td>
</tr>
<tr>
<td>SOP</td>
<td>Standard operating procedure</td>
</tr>
<tr>
<td>Sr-90</td>
<td>Strontium 90</td>
</tr>
<tr>
<td>TSP</td>
<td>Task specific plan</td>
</tr>
</tbody>
</table>
1.0 INTRODUCTION

This task specific plan (TSP) provides task-specific details for the scoping survey at Building 22 at the Willow Grove Naval Air Station (NAS) Joint Reserve Base (JRB) in Horsham, Pennsylvania. The survey will be conducted in accordance with the general approach and methodologies that are given in the Basewide Radiological Management Plan at Naval Air Station Joint Reserve Base, Willow Grove (TetraTech 2014a) and standard operating procedures (SOP). The surveys will conform to the requirements of the Health and Safety Plan (HASP) Naval Air Station Joint Reserve Base, Willow Grove (TetraTech 2014b) prepared for the survey program. No exceptions to the management plan, SOPs, and HASP are noted.

1.1 SITE DESCRIPTION AND HISTORICAL SUMMARY

Building 22 was an existing building from the Pitcairn airfield that was used by the Supply Department after the Naval Air Station was commissioned. The 17,700-square-foot wooden building has a slightly pitched roof and concrete foundation. There is a loading dock and large door at each end. A 1942 drawing shows operational portions of the building to be a receiving area and an issue area. A 1996 survey found asbestos in this building. Prior to 1975, Building 22 was used by the Supply Department, which stored aircraft parts and possibly hazardous material. This building was the warehouse for C-9 components which did include radioactive materials. Any item used at the Station containing radioactive material was likely housed in this building. Examples of radioactive materials possibly used in Building 22 are aircraft parts and self-illuminating instrumentation, compasses, and personnel markers. The specific radionuclides of concern (ROC) identified in the Historical Radiological Assessment (HRA) (TetraTech 2013) are strontium 90 (Sr-90) and radium 226 (Ra-226). Figure 1 provides the location of Building 22 on the NAS JRB Willow Grove site.

2.0 SURVEY DESCRIPTION

This survey is being performed to assess if residual activity is above the established release criteria, as defined in Table 6-1 of the management plan (TetraTech 2014a). Surveys of the facility will be performed to determine the existence of radionuclides associated with the storage of aircraft parts, self-illuminating instruments and markers. Surveys will be performed for the presence of Sr-90 and Ra-226.

Alpha surveys will be performed to determine compliance with release criteria for Ra-226. Due to the extremely low number of counts in the Surface Contamination Monitor (SCM) survey interval associated with the release criteria, positive indications for alpha surveys will be based on exceeding a threshold value in both a primary and recount detector in a 100 cm² area. Areas that exceed the investigation criteria based on the activity level determined by the SCM will be investigated.

Beta surveys will be performed to determine compliance with the release criteria for Sr-90.
Swipe surveys for removeable contamination will be performed as discussed in Section 2.10 obtained at predetermined locations. Swipes will be analyzed onsite for both alpha and beta emitting radionuclides.

 Gamma walkover surveys will be performed as discussed in Section 2.9 in each survey unit to provide additional assurance that no hidden sources of radioactivity exist in the survey unit area.

2.1 Survey Preparation Activities

Areas within Building 22 that have flooring material that has been installed since the possible use of radioactive materials will have the flooring removed to expose the concrete surface to conduct the required scan and fixed measurement surveys. Materials containing asbestos will be removed by a certified asbestos abatement contractor. Materials (tile, carpet, cabinets, shelving) will be surveyed for release in accordance with SOP-012, *Release of Materials and Equipment*. Materials with radioactivity above the limits specified in Table 6-1 of the management plan (TetraTech 2014a) will be packaged for storage and subsequent disposal. Materials that cannot be surveyed due to physical size or porosity will be randomly checked for radioactivity and maintained on site until completion of the building survey. If the Building 22 scoping survey and the random surveying of the material do not identify any radioactivity above background, the material will be disposed of as non-radioactive waste.

Interior walls in Building 22 will not be included in the areas to be surveyed. Building 22 will be surveyed as a Class 3 area. Class 3 areas are not expected to contain residual radioactivity. However, due to the nature of the materials containing radioactivity used, maintained or stored in the impacted areas, the higher probability of residual radioactivity is on the floor surfaces. If any radioactivity greater than the release criteria is detected, reclassification of the area will be evaluated and the wall surfaces will be considered.

Survey area preparation activities will be performed under radiological controls established in the SOPs. A listing of applicable SOPs for both preparation and survey activities is provided in Table 1. Surveys conducted in support of area preparation activities can provide input into final reports, but will not be used to demonstrate compliance with the release criteria or determination for additional survey requirements.

2.2 Release Criteria

The building surface release criteria for Ra-226 is 100 disintegrations per minute (dpm) per 100 square centimeters (cm²) total activity, and for Sr-90 it is 1,000 dpm/100 cm² (TetraTech 2014a). The removable contamination release criteria is one-fifth of the total activity limits (TetraTech 2014a). The limits for the specific radionuclides to be addressed in Building 22 are provided in Table 2. Alpha surveys will be performed to meet the criteria for Ra-226. Beta surveys will be performed to meet the criteria for Sr-90.
2.3 Reference Area

The reference area will be selected with the concurrence of Navy Radiological Affairs Support Office (RASO). The reference areas for the Building 22 survey will consist of concrete floors. The reference materials will be identified in on-site buildings that have no history of containing radioactive material. The reference area survey data will be obtained prior to final recording of surveys within Building 22 and will be included in the Building 22 survey report.

2.4 Investigation Levels

Investigation levels for the alpha and beta surveys will be equal to the release criteria in Section 2.2 for the more restrictive isotope of concern in each area to be surveyed. For gamma walkover surveys, areas exceeding 3 sigma (3σ) above the mean of the survey unit will be investigated. Investigations of alpha or beta surveys may consist of resurveys with longer count times, determination of background adequacy or other means to determine if compliance with release criteria is achieved. Gamma walkover survey investigations will consist of resurveys of the area in which the high reading was obtained to determine the source of the elevated reading or if the reading was a statistical anomaly since approximately 1 percent of all readings will exceed the 3σ value.

2.5 Survey Units and Classification

Building 22 will be surveyed as Class 3, requiring a 25 percent survey of floors. The total floor area of the impacted area of the building is 7,600 square feet or 707 square meters. The building will be surveyed as two separate survey units. A layout drawing indicating building dimensions and survey unit locations is provided as Figure 2. Using a random start point, systematic data collection locations (N) will be laid out in a triangular grid pattern for the survey units using the computer process provided by Visual Sample Plan (DOE 2014). In some cases, the number of data collection locations may exceed N. Locations for data collection are provided in Figures 3 and 4. Additional biased surveys may be performed and samples may be collected at accessible points of ventilation systems and drain entrances within the building.

2.6 Establishing the Number of Measurements

To determine the number of measurements, N, to be taken per survey unit when the contaminant is not present in background, Equation 5-3 of the management plan (TetraTech 2014a) is used:

\[
N = \left(\frac{\left(Z_{1-\alpha} + Z_{1-\beta} \right)^2}{4(Sign \rho - 0.5)^2} \right)^{1.2}
\]

Where:

N = Number of data points
\(Z_{1-\alpha} = \text{Type I decision error level}, \ 1.645 \)
\(Z_{1-\beta} = \text{Type II decision error level}, \ 1.645 \)
\(\text{Sign} \ \rho = \text{random measurement probability}, \ 0.945201 \)

1.2 = 20 percent increase in number of samples over the minimum

The values used in the calculation are from Multi-Agency Radiation Survey and Site Investigation Manual (MARSSIM) guidance (Nuclear Regulatory Commission [NRC] 2000) and are based on a recommended value for the relative shift \((\Delta/\sigma)\) of 1.6 as discussed in Section 5.5.2.2 of MARSSIM (NRC 2000). Type I and Type II decision errors are based on 0.05 false negative and 0.05 false positive rates. The associated Z values are obtained from MARSSIM Table 5.2 (NRC 2000). The random measurement probability, Sign \(\rho \), is from MARSSIM Table 5.4 (NRC 2000).

Using the defined values, the equation becomes:

\[
N = \left(\frac{(1.645 + 1.645)^2}{4(0.945201 - 0.5)^2} \right) (1.2)
\]

The calculation results in a value of \(N = 16.38328 \). Therefore, a minimum of 17 measurements will be obtained in each survey unit.

2.7 Alpha and Beta Scan Measurements

Scan measurements are performed to identify elevated areas of radioactivity within the survey unit. Alpha scans will be effective for identifying elevated concentrations of Ra-226. Beta scans will be effective for identifying elevated concentrations of Sr-90. Twenty five percent of floor surfaces within the Class 3 survey units will be scanned with the SCM. Based on the identified ROCs, the survey unit within Building 22 will be surveyed for alpha and beta activity. All scan surveys will be performed using the SCM. SCM scan surveys will be conducted in the dynamic, or “rolling” mode. Alpha scan measurements are discussed in Section 2.7.1. If adequate area is not available to the SCM in the dynamic mode, surveys may be supplemented by the SCM in the static mode discussed in Section 2.8.1. Beta scan measurements are discussed in Section 2.7.2. If adequate area is not available to the SCM in the dynamic mode, surveys may be supplemented by the SCM in the static mode discussed in Section 2.8.2.

The SCM utilizes a gas flow position sensitive proportional counter (PSPC). The PSPC functions as any gas flow proportional counter, using P-10 as the counting gas. As in any proportional counter, voltage plateaus are established for the detection of alpha or alpha plus beta particles. High voltage appropriate for the type of particles to be detected is applied to the single anode wire which runs the length of the detector. The SCM computer compares the pulse heights of pulses sensed at each end of the anode wire and establishes the location on the anode wire where the pulsed was sensed. Although the available resolution is greater than 2,000
locations on the anode wire, the SCM computer will “bin” the data in 5 centimeters (cm) wide increments along the length of the wire.

The SCM can be operated in both a dynamic or “rolling” mode or a static or “corner” mode. In the dynamic mode, the system uses a direct current powered drive motor affixed to a cart which contains all electronics and computer hardware, and a detector (or two) is mounted to the front of the cart. The SCM’s design focuses on the elimination of human errors associated with performing surveys of large areas. The system is designed such that surveys are performed at constant speed, the detector held at a set distance from the surface being surveyed, and survey data recorded automatically. In the dynamic mode, a precision wheel encoder is mounted to the cart axle to determine distance traveled by the cart. The encoder can measure to a small fraction of a centimeter and is used to trigger the computer to capture data for every 5 cm of travel of the SCM cart. The result is count data (counts) for every 5 cm “bin” for every 5 cm of travel, or a matrix of 25 cm² “pixels” of data. In the static mode, a preset time is applied to the collection of data from a stationary detector. Data is binned in a manner similar to the dynamic mode.

Data is transferred from the SCM to a processing station containing the Survey Information Management Systems (SIMS) software via removable media. SIMS software is used to “stitch” the individual strips of data to create a single survey of an entire area. The data collected in 25 cm² “pixels” is summed with adjacent “pixels” in a manner that will result in the evaluation of every possible 100 cm² area. When determining activity, each 25 cm² “pixel” is 25 percent of four overlapping 100 cm² areas. This process ensures that small areas of activity above limits are not missed through grid registration errors.

2.7.1 Alpha Scan Measurements

The alpha emitting ROC is Ra-226. To achieve the sensitivity to detect at the release criteria for Ra-226, the SCM will be used in the recount mode, using two detectors hard mounted to each other at a set distance. Attachment 1 provides detailed information regarding the SCM/SIMS system compliance with RASO guidance regarding alpha scans for radium. The system will be operated in the rolling mode at a target speed of 0.5 inch per second (inch/sec). The probability of detecting two or more counts due to a source is given by Equation 7-4 from the Management Plan (TetraTech 2014a) below.

\[
P(n \geq 2) = 1 - \left(1 + \frac{(GE + B)t}{60} \right) e^{-\frac{(GE+B)t}{60}}
\]

Where:

\[P(n \geq 2) = \text{probability of getting two or more counts during the time interval } t\]

\[t = \text{time interval of detector over source (second [sec])}\]

\[G = \text{source activity (dpm)}\]

\[E = \text{total efficiency (} \varepsilon_i \times \varepsilon_s)\]
\[\varepsilon_i = \text{detector efficiency} \]
\[\varepsilon_s = \text{surface efficiency} \]
\[B = \text{background count rate (count per minute [cpm])} \]
\[60 = \text{conversion factor, seconds to minutes} \]

Since all detectors associated with the SCM are manufactured to the same specifications, the efficiency of each detector is similar. Therefore, based on the law of probability, the probability of obtaining two or more counts on each detector as they traverse the same 100 dpm source is the square of the probability for a single detector.

Typical background values observed with the SCM are less than 1 cpm/100 cm\(^2\). Detector efficiency (2\(\pi\)) of the SCM for alpha emitters has been measured at greater than 100 percent, due to the SCM design which double counts physically small point sources. Surface efficiency is 0.25 percent as defined in Reference 2, Section 7.2.8. The detector width is 12 cm, although two pixels of 5 cm width, 10 cm total are used to collect data. Survey speed for alpha emitters is 1.25 centimeter per second (cm/sec) (0.5 inch/sec). Using these parameters, equation 7-4 from the Management Plan (TetraTech 2014a) becomes:

\[
P(n \geq 2) = 1 - \left(1 + \frac{(100 \times 0.25 + 1)8}{60}\right) e^{-\frac{(100 \times 0.25 + 1)8}{60}}
\]

Where:

\[P(n \geq 2) = \text{probability of getting two or more counts during the time interval } t \]
\[t = 8 \text{ sec} \]
\[G = 100 \text{ dpm} \]
\[E = 0.25 \]
\[\varepsilon_i = 1.0 \]
\[\varepsilon_s = 0.25 \]
\[B = 1 \text{ cpm} \]

Therefore:

\[P(n \geq 2) = 0.8605 \text{ or } 86.05\% \]

The probability of both detectors responding with two or more counts from a point source of 100 dpm at a speed of 1.25 cm/sec (0.5 inch/sec) would be the square of a single detector, or:

\[P(n \geq 2)_{\text{2 det}} = 74.05\% \]
2.7.2 Beta Scan Measurements

Beta scan surveys will be performed in Building 22. For these beta surveys, the SCM will be the primary instrument. The ROC in the Class 3 area is Sr-90. In Class 3 areas, the SCM will be operated at a target speed of 2 inch/sec (5 cm/sec). For SCM scans for Sr-90 in Class 3 areas, the MDCR from Equation 7-5 of the Management Plan (TetraTech 2014a) is:

\[MDCR = d' \sqrt{b_i \left(\frac{60}{t} \right)} \]

Where:
- \(d' \) = index of sensitivity (\(\alpha \) and \(\beta \) errors [performance criteria])
- \(b_i \) = number of background counts in scan time interval (counts)
- \(i \) = count time interval

Therefore:
\[MDCR = 3.28 \sqrt{16.67 \left(\frac{60}{2} \right)} = 402 \text{ cpm} \]

Where:
- \(d' = 3.28 \)
- \(b_i = 16.67 \text{ counts (based on 500 cpm background and a 2 sec count interval)} \)
- \(i = 2 \text{ sec (based on a scan speed of 5 cm/sec and a detector width of 10 cm.)} \)

and the scan MDC from Equation 7-6 of the Management Plan (TetraTech 2014a) is:

\[Scan \ MDC = \frac{MDCR}{\sqrt{P \cdot \varepsilon_i \cdot \varepsilon_s \cdot \frac{W}{100 \text{ cm}^2}}} \]

Where:
- \(MDCR \) = as discussed above
- \(P \) = surveyor efficiency factor
- \(\varepsilon_i \) = instrument efficiency
- \(\varepsilon_s \) = surface efficiency
- \(W \) = Area of the detector window (cm\(^2\)) [Defaults to 100 cm\(^2\) for probes greater than 100 cm\(^2\)]

Therefore:
\[Scan \ MDC = \frac{402}{\sqrt{1 \cdot 1.04 \cdot .5 \cdot \left(\frac{100}{100} \right)}} = 773 \text{ dpm} \]

Where:
- \(p = 1 \)
- \(\varepsilon_i = 1.04 \)
- \(\varepsilon_s = 0.5 \)
- \(W_A = 100 \text{ cm}^2 \)
2.8 **ALPHA AND BETA STATIC MEASUREMENTS**

Alpha and beta static measurements will be obtained with both the SCM and the Ludlum 43-68 detector coupled to the Ludlum 2221 or 2241 scaler/ratemeter. The SCM static measurements will supplement the surveys performed in the dynamic or rolling mode when the rolling mode cannot get into areas such as on floors against the wall, or on walls where interferences make rolling surveys impractical. The Ludlum 43-68 detector will be used to obtain fixed measurements at the number of locations identified in Section 2.5.

2.8.1 **Alpha Static Measurements**

The limiting alpha emitting ROC is Ra-226. Static counts for alpha emitting Ra-226 obtained with the SCM will utilize the detection probability approach similar to that for the SCM in the dynamic or scan method described in Section 2.7. The SCM will use a single detector; however, 2 data acquisitions of 8 seconds each will be obtained at each location. The surveyor will place the detector against the surface to be surveyed and hold it steady for two 8 second counts. Data will be processed by creating 2 separate surveys of an area, the first 8 second count of each static measurement comprising the first data set and the second 8 second count, the second data set. The second data set will be over-laid on the first, and both sets evaluated for each 100 cm2 area. Those 100 cm2 areas in which both sets show a positive value above a prescribed threshold, will be indicative of an area potentially in excess of the release criteria. The SCM static count process assures that areas greater than the release criteria are detected at the same probability level as described in Section 2.7.1 while suppressing false positives due to background. The approach is consistent with that of the SCM in the dynamic mode.

Direct measurements at predefined locations (see Section 2.5) and investigations will be performed with the Ludlum 43-68 gas proportional detector coupled to a Ludlum 2221 scaler/ratemeter. Static measurements for alpha emissions in Building 22 will require a 2 minute count time for the Ludlum 43-68 based on Ra-226. The MDC calculation for the specified count time from Equation 7-8 of the management plan (TetraTech 2014a):
\[MDC = \frac{3 + 3.29 \sqrt{R_B T_{S+B} (1 + \frac{T_{S+B}}{T_B})}}{\varepsilon_i \varepsilon_s \frac{W_A}{100 \ cm^2} T_{S+B}} \]

Where:
- \(R_B \) = Background count rate (cpm)
- \(T_B \) = Background counting time (min)
- \(T_{S+B} \) = Sample counting time (min)
- \(\varepsilon_i \) = Instrument efficiency
- \(\varepsilon_s \) = Surface efficiency
- \(W_A \) = Active area of the probe window (Defaults to 100 cm\(^2\) for probes greater than 100 cm\(^2\))

Therefore:

\[MDC = 3 + 3.29 \sqrt{1 \times 2 \times \left(1 + \frac{2}{10}\right)} \]

\[MDC = \frac{3 + 3.29 \times 1 \times 2 \times \frac{100}{100 \ cm^2} \times 2}{0.25 \times 0.25} \]

\[MDC = 64.8 \text{ dpm} \]

Where:
- \(R_B = 1 \text{ cpm} \)
- \(T_B = 600 \text{ sec or 10 min} \)
- \(T_{S+B} = 120 \text{ sec or 2 min} \)
- \(\varepsilon_i = 0.25 \)
- \(\varepsilon_s = 0.25 \)
- \(W_A = 126 \text{ cm}^2 \) (areas greater than 100 cm\(^2\) default to 100 cm\(^2\))

2.8.2 Beta Static Measurements

Static measurement count times for the beta from the limiting ROC, Sr-90, will be 8 seconds for the SCM and 30 seconds for the Ludlum 43-68 with the 2221 or 2241 scaler/ratemeter. For the SCM surveying for Sr-90, the MDC, equation 7-8 from the Basewide Radiological Management Plan (TetraTech 2014a) becomes:
\[
MDC = \frac{3 + 3.29 \sqrt{500 \times 0.133 \times (1 + \frac{0.133}{100})}}{1.04 \times 0.5 \times \frac{100}{100} \times 0.133} = 592 \text{ dpm}
\]

Where:
- \(R_b = 500 \text{ cpm} \)
- \(T_{s+b} = 8 \text{ sec. or } 0.133 \text{ min} \)
- \(T_b = 8 \text{ sec. or } 0.133 \text{ min} \)
- \(\varepsilon_i = 1.04 \)
- \(\varepsilon_s = 0.5 \)
- \(W_A = 100 \text{ cm}^2 \)

For the Ludlum 43-68 surveying for Sr-90, the equation becomes:

\[
MDC = \frac{3 + 3.29 \sqrt{200 \times 0.5 \times (1 + \frac{0.5}{100})}}{0.52 \times 0.52 \times \frac{100}{100} \times 0.5} = 366 \text{ dpm}
\]

Where:
- \(R_b = 200 \text{ cpm} \)
- \(T_{s+b} = 30 \text{ sec. or } 0.5 \text{ min} \)
- \(T_b = 30 \text{ sec. or } 0.5 \text{ min} \)
- \(\varepsilon_i = 0.52 \)
- \(\varepsilon_s = 0.5 \)
- \(W_A = 100 \text{ cm}^2 \)

2.9 Gamma Walkover Surveys

Gamma walkover surveys will be conducted in each survey unit with a 2” by 2” sodium iodide detector and a Ludlum 2241 ratemeter. Gamma readings will be obtained in accordance with Section 8.2.2 of the Basewide Radiological Management Plan (TetraTech 2014a). Surveys will be conducted in accordance with procedure SUR-022.

2.10 Removable Contamination Surveys

Removable contamination will be assessed by swiping a Masslin cloth on a suspect area and monitoring the swiped cloth with a Ludlum 43-68 detector coupled to a Ludlum 2221 scaler/ratemeter. Since both alpha and beta emitting nuclides are of concern, the Masslin cloth will be surveyed with detectors on the alpha plateau, then the alpha plus beta plateau. Areas in which the first swipe of the Masslin cloth indicates any increase in activity will be re-wiped with the Masslin cloth to determine the specific area that contains removable contamination. Swipe surveys will be conducted at any area indicating activity above background. Swipe surveys will
also be conducted in at least one location within each 1,000 ft² in a Class 3 survey unit, and at each floor and sink drain. Swipe surveys will also be performed at each of the systematic data collection locations. All swipe surveys will be counted onsite using a Ludlum 2929 detector which records both alpha and beta activity simultaneously. Swipe surveys will be performed and documented in accordance with SOP-006, *Radiation and Contamination Surveys*.

2.11 Media Samples

Samples will be collected if sediment is found in sumps, floor drains, and sink drains to support evaluation of compliance with release criteria and to determine specific nuclides as necessary. Sampling may also be performed as an integral part of investigations to determine the cause of elevated measurements. Samples will be collected in accordance with SOP-009, *Sampling Procedures for Radiological Surveys* and submitted to an off-site laboratory for radiological analysis. One sediment sample per drain will be collected if sufficient sediment is present. Analysis of results will be evaluated against soil criteria identified in Table 2.

Media samples will also be obtained at any accessible building outfall locations that would contain liquid runoff from Building 22.

3.0 Site Restoration

Site restoration work is not required at the conclusion of surveying in Building 22.

4.0 Building 22 Report

Results of the survey that demonstrate that no single measurement indicating activity greater than the release criteria, and the resultant risk based dose as calculated, will be presented in a survey report. Any conclusion other than a recommendation for unrestricted release will be presented in a Characterization Report.

5.0 Quality Control

The data quality objectives for the survey are provided in Table 3.

Definable features of work (DFW) establish the measures required to verify both the quality of work performed and compliance with project requirements. The DFW for this task is radiological surveys. Description of this DFW and the associated phases of quality control are presented in Table 4.

6.0 Environmental Protection

Environmental protection requirements are addressed in the management plan (*TetraTech 2014a*).
7.0 REFERENCES

Tetra Tech, Inc. (TetraTech) 2014b. *Health and Safety Plan for Basewide Radiological Surveys, Naval Air Station, Naval Air Station Joint Reserve Base Willow Grove, Willow Grove, Pennsylvania*. May

Tetra Tech, Inc. (TetraTech) 2013. *Historical Radiological Assessment, Naval Air Station Joint Reserve Base Willow Grove, Willow Grove, Pennsylvania*. July
FIGURES
Class 3 survey coverage requirements are 25% of survey unit floor area. Surveys to be performed for Alpha and Beta.
<table>
<thead>
<tr>
<th>Procedure</th>
<th>Title</th>
<th>Rev</th>
</tr>
</thead>
<tbody>
<tr>
<td>SOP 002</td>
<td>Radiation Work Permits</td>
<td>0</td>
</tr>
<tr>
<td>SOP 004</td>
<td>Project Dosimetry</td>
<td>0</td>
</tr>
<tr>
<td>SOP 006</td>
<td>Radiation and Contamination Surveys</td>
<td>0</td>
</tr>
<tr>
<td>SOP 007</td>
<td>Preparation of Portable Radiation and Contamination Survey Meters for Field Use</td>
<td>0</td>
</tr>
<tr>
<td>SOP 008</td>
<td>Air Sampling and Sample Analysis</td>
<td>0</td>
</tr>
<tr>
<td>SOP 009</td>
<td>Sampling Procedures for Radiological Surveys</td>
<td>0</td>
</tr>
<tr>
<td>SOP 010</td>
<td>RCA Posting and Access Control</td>
<td>0</td>
</tr>
<tr>
<td>SOP 011</td>
<td>Control of Radioactive Materials</td>
<td>0</td>
</tr>
<tr>
<td>SOP 012</td>
<td>Release of Materials and Equipment</td>
<td>0</td>
</tr>
<tr>
<td>SOP 016</td>
<td>Decontamination of Equipment and Tools</td>
<td>0</td>
</tr>
<tr>
<td>SOP 022</td>
<td>Radiological Clothing Selection, Monitoring and Decontamination</td>
<td>0</td>
</tr>
<tr>
<td>SOP 023</td>
<td>Source Control</td>
<td>0</td>
</tr>
<tr>
<td>SOP 024</td>
<td>Occurrence Reporting</td>
<td>0</td>
</tr>
<tr>
<td>SUR 022</td>
<td>Gamma Walkover Surveys</td>
<td>0</td>
</tr>
<tr>
<td>RP-OP-017</td>
<td>Operation of the Ludlum Model 2929 Dual Scaler</td>
<td>0</td>
</tr>
<tr>
<td>RP-OP-025</td>
<td>Operation of the Ludlum Model 2221</td>
<td>0</td>
</tr>
<tr>
<td>RP-OP-026</td>
<td>Operation of the Ludlum Model 19</td>
<td>0</td>
</tr>
<tr>
<td>SCM-OPS-01</td>
<td>Position Sensitive Proportional Counters Purging</td>
<td>0</td>
</tr>
<tr>
<td>SCM-OPS-02</td>
<td>Position Sensitive Proportional Counters Plateau Determination</td>
<td>0</td>
</tr>
<tr>
<td>SCM-OPS-03</td>
<td>Position Sensitive Proportional Counters Position Calibration</td>
<td>1</td>
</tr>
<tr>
<td>SCM-OPS-04</td>
<td>Encoder Calibration</td>
<td>0</td>
</tr>
<tr>
<td>SCM-OPS-05</td>
<td>Position Sensitive Proportional Counters Efficiency Calibration</td>
<td>0</td>
</tr>
<tr>
<td>SCM-OPS-06</td>
<td>Position Sensitive Proportional Counters Quality Assurance</td>
<td>1</td>
</tr>
<tr>
<td>SCM-SETUP-01</td>
<td>Position Sensitive Proportional Counters Repair</td>
<td>0</td>
</tr>
<tr>
<td>SCM-SETUP-02</td>
<td>Hardware Setup</td>
<td>0</td>
</tr>
<tr>
<td>SCM-SETUP-03</td>
<td>Quality Assurance Testing of SCM</td>
<td>0</td>
</tr>
</tbody>
</table>
TABLE 2 BUILDING 22 PRIMARY RADIATION PROPERTIES AND RELEASE CRITERIA FOR RADIONUCLIDES OF CONCERN

<table>
<thead>
<tr>
<th>Radionuclide</th>
<th>Half-Life</th>
<th>Type</th>
<th>Primary Radiation Properties</th>
<th>Release Criteria<sup>a</sup></th>
<th>Materials & Equipment</th>
<th>Building Surfaces</th>
<th>Soil<sup>b</sup></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Total Surface Activity</td>
<td>Removable Activity</td>
<td>Total Surface Activity</td>
</tr>
<tr>
<td>Sr-90</td>
<td>3.01E01 Years Beta</td>
<td>1,000</td>
<td>200</td>
<td>1,000</td>
<td>200</td>
<td>1.02</td>
<td></td>
</tr>
<tr>
<td>Ra-226</td>
<td>1.60E03 years Alpha</td>
<td>100</td>
<td>20</td>
<td>100</td>
<td>20</td>
<td>1.0</td>
<td></td>
</tr>
</tbody>
</table>

Notes:

a Units are disintegrations per minute per 100 square centimeters, unless otherwise specified.
b Criteria is above background for those radionuclides found in background soils.

Ra-226 Radium 226
Sr-90 Strontium 90

TABLE 3 SUMMARY OF DATA QUALITY OBJECTIVES

<table>
<thead>
<tr>
<th>STEP 1</th>
<th>STEP 2</th>
<th>STEP 3</th>
<th>STEP 4</th>
<th>STEP 5</th>
<th>STEP 6</th>
<th>STEP 7</th>
</tr>
</thead>
<tbody>
<tr>
<td>Statement of Problem</td>
<td>Decisions</td>
<td>Inputs to the Decisions</td>
<td>Boundaries of Study</td>
<td>Decision Rules</td>
<td>Limits on Decision Errors</td>
<td>Optimizing the Sampling Design</td>
</tr>
</tbody>
</table>
| Building 22 is listed in the HRA as an area impacted by radiological activities. The isotopes of concern are Sr-90 and Ra-226. | The primary use of the data expected to result from completion of this TSP is to support the Scoping Survey of Building 22. Therefore the decision to be made can be stated as "Do the results of the survey indicate activity above background or meet the release criteria?" | Radiological surveys required to support the Final Status Survey of Building 22 will include:
- 25 percent scan surveys of Class 3 areas
- A minimum of 17 systematic static measurements will be performed in Class 3 areas
- One swipe per 1,000 square feet in Class 3 survey units
- One sediment sample will be collected from each drain if available.
- One swipe at each systematic sample location | The lateral and vertical spatial boundaries for this survey effort are confined to the interior portions of Building 22. | If the concentration of radioactivity on building surfaces, paved areas, or in sediment samples is less than the release criteria, then no further measurements are required.
If the results of the survey exceed the release criteria, then the building will be investigated further. | Limits on decision errors are set at 5 percent as specified in the management plan ([TetraTech 2014a](#)). | Operational details for the radiological survey process have been developed. The theoretical assumptions are based on guidelines contained in MARSSIM ([NRC 2000](#)). Specific assumptions regarding types of radiation measurements, instrument detection capabilities, quantities and locations of data to be collected, and investigation levels are contained in this TSP and the management plan ([TetraTech 2014a](#)). |

Notes:
- **HRA**: Historical Radiological Assessment
- **MARSSIM**: Multi-Agency Radiation Survey and Site Investigation Manual
- **NRC**: Nuclear Regulatory Commission
- **Ra-226**: Radium 226
- **Sr-90**: Strontium 90
- **TSP**: Task Specific Plan
- **TetraTech 2014a**: Tetra Tech 2014a
TABLE 4 DEFINABLE FEATURES OF WORK FOR RADIOLOGICAL SURVEYS

<table>
<thead>
<tr>
<th>ACTIVITY</th>
<th>PREPARATORY (Prior to initiating survey activity)</th>
<th>INITIAL (At onset of survey activities)</th>
<th>FOLLOW-UP (Ongoing during survey activities)</th>
</tr>
</thead>
</table>
| Radiological Surveys | • Verify that an approved TSP is in place.
 • Verify that the Remedial Project Manager and the Caretaker Site Office are notified about mobilization.
 • Verify that an approved Radiation Work Permit, if required, is available and has been read and signed by assigned personnel.
 • Verify that the management plan, HASP and TSP, have been reviewed.
 • Verify that personnel assigned are trained and qualified.
 • Verify that personnel have been given an emergency notification procedure.
 • Verify that workers assigned dosimeter have completed NRC Form 4.
 • Verify that relevant SOPs are available and have been reviewed for equipment to be used.
 • Verify that equipment is on site and in working order (initial daily check). | • Verify that radiological instruments are as specified in the management plan (TetraTech 2014a) and TSP.
 • Inspect Training Records.
 • Verify that reference area measurements have been obtained in accordance with the management plan (TetraTech 2014a).
 • Verify that daily checks were performed on all survey instruments.
 • Verify that instrument calibration and setup are current.
 • Verify that required dosimeter is being worn.
 • Verify that field logbooks and proper forms are in use.
 • Verify that samples and measurements are being collected in accordance with the TSP, management plan and applicable SOPs.
 • Verify the sample handling is in accordance with the management plan (TetraTech 2014a) and applicable SOPs. | • Verify that the site is properly posted and secured.
 • Conduct ongoing inspections of material and equipment.
 • Verify that daily instrument checks were obtained and documented.
 • Verify that survey results were documented.
 • Inspect chain-of-custody and survey logs for completeness.
 • Verify that survey activities conform to the TSP.
 • Verify that survey instruments are recalibrated after repairs or modifications. |

Notes:
- HASP Health and Safety Plan
- NRC Nuclear Regulatory Commission
- SOP Standard Operating Procedure
- TSP Task Specific Plan

*Dinal TSP
Building 22
NAS JRB Willow Grove*
ATTACHMENT 1

SURFACE CONTAMINATION MONITOR/SURVEY INFORMATION
MANAGEMENT SYSTEM
COMPLIANCE WITH RASO GUIDANCE DOCUMENT
CONDUCTING ALPHA SCANS FOR RADIUM
Surface Contamination Monitor/Survey Information Management System
Compliance with RASO Guidance Document
Conducting Alpha Scans for Radium

May 2014

Prepared By:

Original Signed By
Richard W. Dubiel, CHP
Surface Contamination Monitor/Survey Information Management System
Compliance with RASO Guidance Document
Conducting Alpha Scans for Radium

RASO has issued a guidance document for conducting alpha scans for radium-226 (RASO 2013). The document follows the protocols established in MARSSIM (NRC 2000). Since Ra-226 is an alpha emitter that is assigned a low release criterion by Navy standards, the detection process must rely on Probability of Detection Theory to determine the ability of an instrument to detect elevated areas of alpha activity during the scanning process. Specifically, the Navy has imposed acceptance criteria of 100 dpm/100 cm². Because of the low emission rate at this level of activity of Ra-226, the recommended process is to slowly scan at rates no greater than ½ inch per second and listen for audible clicks. Typically more than one click within the detector area will indicate the potential that Ra-226 at the release limit is present. The area must be marked or immediately investigated with longer, static counts. The probability of detecting 2 or more counts in a scan interval is defined by equations found in Appendix J to MARSSIM (NRC 2000) and provided in the RASO guidance (RASO 2013).

RASO guidance (RASO 2013) recommends that equipment and scan speed be chosen such that there is a 90% probability of detecting a 100 dpm/100 cm² source. A minimum probability of 68% detection is included. Inherent in the guidance is that false positives from background in materials such as concrete or asphalt will occur a significant percent of the time and can be predicted by Poisson statistics. The Surface Contamination Monitor (SCM) and Survey Information Management System (SIMS) are capable of scanning surveys that meet the detection probability requirements and significantly reduce the number of false positives from material background that subsequently require investigation.

The SCM is an automated system utilizing a DC motor drive to control scan speed, a precision wheel encoder to measure relative location, large area position sensitive detectors with offsets to maintain constant detector to surface distance, and a computer to record count rate data and system speed. The large area detectors are Position Sensitive Proportional Counters (PSPC) with lengths up to 180 cm, and width of 12 cm. The SCM utilizes a gas flow position sensitive proportional counter (PSPC). The PSPC functions as any gas flow proportional counter, using P-10 as the counting gas. As in any proportional counter, voltage plateaus are established for the detection of alpha or alpha plus beta particles. High voltage appropriate for the type of particles to be detected is applied to the single anode wire which runs the length of the detector. The SCM computer compares the pulse heights of pulses sensed at each end of the anode wire and establishes the location on the anode wire where the pulsed was sensed. Although the available resolution is greater than 2,000 locations on the anode wire, the SCM computer will “bin” the data in 5 centimeters (cm) wide increments along the length of the wire.

The SCM can be operated in both a dynamic or “rolling” mode or a static or “corner” mode. In the dynamic mode, the system uses a direct current powered drive motor affixed to a cart.
which contains all electronics and computer hardware, and to which a detector (or two) is mounted. The SCM’s design focuses on the elimination of human errors associated with performing surveys of large areas. The system is designed such that surveys are performed at constant speed, the detector maintained at a set distance from the surface being surveyed, and survey data recorded automatically. In the dynamic mode, a precision wheel encoder is mounted to the cart axle to determine distance traveled by the cart. The encoder can measure to a small fraction of a centimeter and is used to trigger the computer to capture data for every 5 cm of travel of the SCM cart. The result is count data (counts) for every 5 cm “bin” and every 5 cm of travel, or a matrix of 25 cm² “pixels” of data. In the static mode, a preset time is applied to the collection of data from a stationary detector. Data is binned in a manner similar to the dynamic mode.

Data is transferred from the SCM to a processing station containing the Survey Information Management System (SIMS) software via removable media. SIMS software is used to “stitch” the individual strips of data to create a single survey of an entire area. The data collected in 25 cm² “pixels” is summed with adjacent “pixels” in a manner that will result in the evaluation of every possible 100 cm² area. When determining activity, each 25 cm² “pixel” is 25 percent of four overlapping 100 cm² areas. This process ensures that small areas of activity above limits are not missed through grid registration errors.

Performance of alpha scan surveys includes the use of a second or “recount” detector hard mounted at a set distance behind the primary detector. The recount detector records a second set of data for the same area surveyed by the primary detector, with both data sets filed on the SCM computer and subsequently transferred to SIMS. The recount survey acts as an automated “investigation” of all 100 cm² areas surveyed by the primary detector. The
calculations below are designed to show that SCM/SIMS is capable of meeting the probability of detection guidance of the RASO guidance (RASO 2013) and greatly reducing the number of false positives due to material background.

Calculations

Efficiency values have been determined using a NIST traceable thorium 230 (Th-230) source. The source is a 5 mm diameter source, more like a point source than a distributed source. The physical size of the source provides a better approximation of the size that would be represented by a 100 dpm Ra-226 spot. The specific activity of Ra-226 is 1 Curie per gram, therefore 100 dpm would be 4.5×10^{-11} grams of Ra-226.

Due to the physical size of the source, the data accumulation in 25 cm2 “pixels”, and the summing of 4 adjacent “pixels” as described above creating a 100 cm2 area data entry, the count rate from the NIST traceable source would be doubled. The result is an efficiency far greater than other proportional counters. Demonstrated 2π detector efficiencies (ε_i), exceed 100%. Surface efficiency (ε_s) is 0.25 as stated in the RASO guidance document (RASO 2013).

Alpha background values from concrete and asphalt surfaces vary greatly based on materials from various regions of the US, various sources within a specific area, and even locations within a quarry. Background can also be affected by radon progeny on the surface. Experience has shown that typical alpha backgrounds measured by the SCM are less than 1 cpm per 100 cm2.

Probability of detection equations are found in the RASO guidance (RASO 2013) and MARSSIM (NRC 2000), Appendix J. The SCM will identify a positive indication based on 2 or more counts in a 100 cm2 area. The equation applied to the SCM survey is:

Equation 1

$$P(n \geq 2) = 1 - e^{-\frac{(GE + B)t}{60}} \left[1 + \frac{(GE + B)t}{60} \right]$$

Where:
- P = Probability of Detecting counts (n)
- B = background count rate (cpm)
- G = hot spot activity (dpm)
- E = total efficiency ($\varepsilon_i \times \varepsilon_s$)
- ε_i = detector efficiency (2π)
- ε_s = surface efficiency (0.25)
- t = resident time (sec.)
The following parameters are used to calculate the probability of getting 2 or more counts in a 100 cm² area from a 100 dpm hot spot on a single PSPC detector scanning at ½ inch per second:

\[
\begin{align*}
B &= 1 \text{ cpm} \\
G &= 100 \text{ dpm} \\
E &= 0.25 \\
\varepsilon_i &= 1.00 \\
\varepsilon_s &= 0.25 \\
t &= 8 \text{ sec (two 5 cm long pixels, 1.25 cm/sec scan speed)}
\end{align*}
\]

SIMS computer analysis tools allow for the evaluation of both the primary and recount as separate surveys and evaluation of the two surveys in a coincidence mode. Each 100 cm² area surveyed by both detectors is evaluated against a threshold value of 2 or more counts. If both detectors indicate greater than 2 or more counts, the calculated activity from each detector is averaged and identified in the coincidence count display and data table. If either primary or recount detector indicates less than 2 counts, a null value is identified in the coincidence display and data table.

Since the recount detector is hard mounted to the primary detector, the scan speed will be identical. PSPC efficiencies are very similar and all tested have exhibited 2π efficiencies of greater than 1.00. The probability of detection will be the same on both detectors. Therefore, the probability of getting 2 or more counts in a 100 cm² area from both detectors is the square of the probability from a single detector.

In order to calculate the false positive rate, i.e. the probability of identifying "contamination" above a certain value, while only background is present, the same formula can be used. Setting the hot spot value to zero will provide the probability of getting 2 or more counts in a 100 cm² area from 1 cpm background on a single PSPC detector scanning at ½ inch per second. Again, the probability of getting 2 or more counts in a 100 cm² area from 1 cpm background on both detectors is the square of the probability from a single detector.

When used in the static mode, the detector is placed on the surface with a computer controlled preset counting time. A single detector is used with the detector remaining stationary for 2 data acquisitions. A full survey in the static mode will result in many “strips” of data. SIMS processing will create two complete surveys, using alternating data strips for the primary and recount surveys. Coincidence analysis is applied in the same manner as described above. The counting time is set at 8 seconds for each acquisition and the instrument efficiency is similar to that determined for the dynamic mode. Therefore probability of detection calculations will be the same for both the dynamic and static modes of operation.

The results of applying both the 100 dpm/100 cm² hot spot and the zero hot spot and 1 cpm background to the probability of detection equation are as follows:
SCM Probability of Detection for Surface Alpha Activity

<table>
<thead>
<tr>
<th>Hot Spot Value</th>
<th>P(n ≥ 2) Single PSPC Detector</th>
<th>P(n ≥ 2) Primary and Recount PSPCs</th>
</tr>
</thead>
<tbody>
<tr>
<td>100 dpm/100 cm²</td>
<td>0.861 (86%)</td>
<td>0.741 (74%)</td>
</tr>
<tr>
<td>0</td>
<td>0.008</td>
<td>6.62E-05</td>
</tr>
</tbody>
</table>

Conclusion

The SCM/SIMS process uses an automated data collection process to minimize human errors associated with surveys for low activity alpha emitting radionuclides. Using a second detector, in recount mode of data collection, provides an ongoing means of investigation for small count rates that may be a result of surface background. The SCM/SIMS system provides two separate surveys of the same area, allowing for spatial coincidence analysis of the data. The SCM/SIMS system is sufficiently sensitive to meet the RASO guidance for alpha scanning for radium-226 while providing a computerized analysis of the results from the two surveys to greatly reduce the number of investigations required from natural activity that may be on or in the surface material.
REFERENCES
